Applications of SHOP and SHOP2

Dana Nau Tsz-Chiu Au Okhtay Ilghami
University of Maryland University of Maryland University of Maryland
Ugur Kuter Héctor Munoz-Avila J. William Murdock
University of Maryland Lehigh University IBM Research
Dan Wu Fusun Yaman
University of Maryland University of Maryland

CS-TR-4604, UMIACS-TR-2004-46
June 25, 2004

Abstract

SHOP and SHOP2 are HTN planning systems that were designed with two goals in mind: to
investigate some research issues in automated planning, and to provide some simple, practical
planning tools. They are available as freeware, and have developed an active base of users in
government laboratories, industrial R&D projects, and academic settings. This paper summa-
rizes how SHOP and SHOP2 work, describes some of the applications that we and others have
developed for them, and discusses directions for future research and enhancements.

1 Introduction

The SHOP and SHOP2 planning systems were designed with two goals in mind: to investigate
some research issues in automated planning, and to provide some simple, practical planning tools.
They have been successful in both respects.

SHOP and SHOP2 are available as open-source software, and have been downloaded thousands
of times. Their practical utility is shown by the emergence of an active set of users, which include
government laboratories, industrial R&D projects, and academic settings. As an example of their
research impact, SHOP2 received one of the top four awards in the 2002 International Planning
Competition.

One reason for the success of SHOP and SHOP2 is their use of Hierarchical Task Networks
(HTNs). HTN planning is done by applying HTN methods, which basically are forms that describe
how to decompose tasks into subtasks. HTN methods can be used to describe the “standard
operating procedures” that one would normally use to perform tasks in some domain; thus they
often correspond well to the way that users think about problems.

Another reason for the success of SHOP and SHOP2 is their use of a search-control strategy
called ordered task decomposition, which reduces the complexity of reasoning by eliminating a great
deal of uncertainty about the world. Ordered task decomposition makes it easy to incorporate
a great deal of expressive power into the planning system: for example, SHOP and SHOP2 can
do complex inferential reasoning, mixed symbolic/numeric computations, and call user-supplied
subroutines.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
25 JUN 2004 2. REPORT TYPE 00-00-2004 to 00-00-2004
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Applications of SHOP and SHOP2 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Maryland,8400 Baltimor e Avenue,College Park,MD,20742 | REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF; 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 13
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

¢ Description of =

Initial state

Objectives Planner
Plans
Y
Controller
. ‘ .
Observations Actions
System Z
T Events

Figure 1: A simple conceptual model for planning.

This paper is organized as follows. Section 2 gives an informal description of HTN planning.
Section 3 gives an overview of SHOP and SHOP2, and Section 4 summarizes some of the projects
in which they have been used. Section 5 contains concluding remarks, and describes our ongoing
and future work.

2 Background

Automated Planning. In general, the purpose of an automated planning system is to generate
a plan or policy that a plan executor can execute in order to achieve some set of goals or objectives.
Most planning research has focused on offfine planning (see Figure 1), in which the entire plan
is formulated before the plan executor begins executing it. Thus at planning time, no direct
information is available to the planner about a plan’s success or failure—instead, the planner must
reason about whether the plan will (or is likely to) succeed or fail. Automated planning systems
can be classified roughly into three types:

e Domain-specific planning systems, where the planning domain is known beforehand and the
system is designed specifically to reason about plans in that domain. Several of the most successful
planning systems are of this type (e.g., [12]).

e Domain-independent planning systems, which are designed to work in any domain within some
large class of domains (e.g., the well-known classical planning domains [3]), provided that the
input includes definitions of the basic actions in the domain. Domain-independent systems have
been developed that work quite well in abstract domains—but getting them to work well in
domains of practical importance has been an elusive goal.

e Domain-configurable planning systems. Here, the planning engine is domain-independent, and
the domain description includes both the basic actions (like in domain-independent planning)
and also some information about how those actions should or may be combined in order to solve
planning problems.

Much more work has been done on automated planning than we can describe here, and we refer
the reader to [3] for details.

HTN Planning. For domain-specific and domain-configurable planning, one of the best-known
approaches is HTN planning, in which the planning system formulates a plan by decomposing tasks
(symbolic representations of activities to be performed) into smaller and smaller subtasks until
primitive tasks are reached that can be performed directly. The basic idea was developed in the
mid-70s [10, 13], and the formal underpinnings were developed in the mid-90s [2].

HTN-planning research has been much more application-oriented than most other Al-planning
research. Most of the domain-configurable systems (e.g., O-Plan [14], SIPE-2 [15], SHOP [8], and
SHOP2 [7]) have been used in application development, and domain-specific HTN planning systems
have been built for several application domains (e.g., [12]).

An HTN planning problem consists of the following: the initial state (a symbolic representation
of the state of the world at the time that the plan executor will begin executing its plan), the initial
task network (a set of tasks to be performed, along with some constraints that must be satisfied),
and a domain description that contains the following:

e A set of planning operators that describe various kinds of actions that the plan executor can
perform. Each operator may have a set of preconditions that must be true in the state in which
the operator is to be executed, and a set of effects that will occur when the operator is executed.
Each of the possible actions is an operator instance, produced by assigning values to an operator’s
parameters.

o A set of methods that describe various possible ways of decomposing tasks into subtasks. These
are the “standard operating procedures” that one would normally use to perform tasks in the
domain. Each method may have a set of constraints that must be satisfied in order to be
applicable.

e Optionally, various other information such as definitions of auxiliary functions and definitions of
axioms for inferring conditions that are not mentioned explicitly in states of the world.

Planning is done as follows. For each nonprimitive task, the planner chooses an applicable method
and instantiates it to decompose the task into subtasks. For each primitive task, the planner
chooses an applicable operator and instantiates it to produce an action. If all of the constraints
are satisfied, then the planner has found a solution plan; otherwise the planning system will need
to backtrack and try other methods or other instantiations.

Example. Figure 2 gives a pseudocode representation of an extremely simple planning domain
in which there are two ways to travel from one location to another: by foot and by taxi. These
are represented by two methods: travel-by-foot and travel-by-taxi. The travel-by-foot method has
one constraint: a precondition saying that the distance from the starting point to the destination
must be less than or equal to 2 miles. If the method is applicable, it decomposes the task into
a single subtask: walk to the park. The travel-by-taxi method has one constraint, which is also a
precondition: the traveler must have enough cash to pay the taxi driver. If the method is applicable,
it decomposes the task into three subtasks: call a taxi, ride to the park, and pay the driver. All of
the subtasks are primitive, i.e., the traveler is expected to know how to accomplish them directly.

Now, suppose that in the initial state, I am at home, I have $20, and I want to travel to a

park that is 8 miles away. To plan how to travel to the park (see Figure 3), first I try to use the
travel-by-foot method, but this method is not applicable because the park is more than 2 miles

method travel-by-foot
precond: distance(x,y) < 2

task: travel(a, z,y)
subtasks: walk(a, z,y)

method travel-by-taxi
task: travel(a, z,y)
cash(a) > 1.5+ 0.5 x distance(x,y)

precond: a) > 1.
subtasks: call-taxi(a,z) — ride(a, z,y) — pay-driver(a, z,y)

operator walk
precond: location(a) = x

effects: location(a) «— y

operator call-taxi(a, z)
effects: location(taxi) «— x

operator ride-taxi(a, x)
precond: location(taxi) = x, location(a)
effects: location(taxi) < y, location(a) — y
operator pay-driver(a, x,y)
precond: cash(a) > 1.5+ 0.5 x distance(x,y)
cash(a) <+ cash(a) — 1.5 4+ 0.5 x distance(x,y)

effects:
Figure 2: Pseudocode representation of a simple travel-planning domain. Left-arrows denote as-

=X

signments of values to state-variables; right-arrows are ordering constraints

travel(me,home,park)

Initial task:

travel-by-foot
Precond: cash(me)>1.50 + 0.50*distance(home,park)

Decomposition into subtasks

Precond: distance(home,park) <2
< Precondition succeeds
ordering R

Precondition fails
ordering
. » . >
constraint constraint
T :

Initial state ‘| call-taxi(me,home) |@| ride(me,home,park) |@| pay-driver(me,home,park) |
I 1
\ Precond: ...

\
' Precond: ... \
Effects: ...

\

1

) Precond:
~.. | Effects: ...

1

k Effects: ...

Figure 3: Solving a planning problem in the travel-planning domain

Figure 4: An example of ordered task decomposition. The subscripts show the order in which the
tasks are decomposed. In this example, tasks t4,%g,t7,ts are primitive, i.e., they correspond to
planning operators.

away. Next, I try to use the travel-by-taxi method. Its precondition is satisfied, so the method
produces a sequence of three subtasks, with a constraint saying they are to be performed in the
following order: (1) call a taxi to my home, (2) ride in it to the park, and (3) pay the driver $5.50.
The subtasks all are primitive, i.e., each of them corresponds to an action. The first action has
no preconditions, so it is applicable and produces a state s; that is identical to the initial state
except that location(taxi) = home. This state satisfies the preconditions of the second action. The
second action produces a state in which the precondition of the third action is satisfied, so I have
a solution plan. After execution of this plan, the final state will be as shown in the figure.

3 SHOP and SHOP2

HTN planning is basically a trial-and-error search: the planner may have to try many different pos-
sibilities before finding a plan that works. In any trial-and-error search, one of the most important
questions is what kind of search-control strategy to use.

SHOP and SHOP2 use a search-control strategy called ordered task decomposition: they choose
to decompose tasks into subtasks in the same order as the order in which the tasks are supposed
to be accomplished. As a consequence, SHOP and SHOP2 generate the steps of each plan in the
same order that the plan executor will execute those steps (see Figure 4), so they know the current
state at each step of the planning process. This reduces the complexity of reasoning by eliminating
a great deal of uncertainty about the world, thereby making it easy to incorporate substantial
expressive power into the planning system, such as the auxiliary functions and axioms mentioned
earlier.

The primary difference between SHOP and SHOP2 is that SHOP requires a strict linear ordering
on subtasks and does not allow them to be interleaved. In contrast, SHOP2 does not impose these
requirements. For example, in Figure 4, the subtasks of task ¢3 and task t5 are interleaved; this
can occur in SHOP2 but not in SHOP. As a result, some planning domains that would be rather
cumbersome to describe in SHOP can be described more easily in SHOP2.

In April 2002, the SHOP2 planning system achieved high visibility because of its performance
in the 2002 International Planning Competition, where it received one of the top four awards.!

!There were two awards for “distinguished performance” and two for “distinguished performance of the first

SHOP2 was one of the three fastest planners in the competition: it was able to solve planning
problems many times faster and many times more complicated than those solved by most of the
other systems. In addition, SHOP2 solved 899 out of 904 problems, more than any of the other
systems.

Both SHOP and SHOP2 are open-source software, and may be downloaded at (http://www.
cs.umd.edu/projects/shop). SHOP is available in both Common Lisp and Java. SHOP2 is only
available in Common Lisp, but it includes an interface for interoperating with programs written in
other languages, and we are currently implementing a Java version.

4 Applications of SHOP and SHOP2

SHOP and SHOP2 have been downloaded thousands of times,? and have developed a significant
user base, including users from government laboratories, industries, and universities. Based on

information given to us by some of the users on our mailing list, here are descriptions of a few of
the projects in which SHOP and SHOP2 have been used.

4.1 Projects in Government Laboratories

Evacuation Planning (Naval Research Laboratory, Washington, DC)

The HICAP system at the US Naval Research Laboratory (NRL) is a tool for helping expe-
rienced human planners to develop evacuation plans, i.e., plans to evacuate humans whose lives
are in danger. Evacuation planning must be done by a human expert or under the supervision of
a human expert: it is unrealistic to expect that a planning system could produce good plans by
itself, and flawed evacuation plans could yield dire consequences. For this reason, the top level of
HICAP is a plan editor with which users can edit tasks manually and can use a planning system
to interactively refine plans.

Only part of the knowledge necessary for evacuation planning can be formalized sufficiently for
automated planning. In general, there will be an incomplete domain description, in the form of
standard requirements and operating procedures—but these are not sufficient for deriving detailed
plans. For that, knowledge about previous experiences is essential. Thus, HICAP’s planning
module includes both generative and case-based planning. The generative component is provided
by SHOP. The case-based component, NaCoDAE, works by retrieving fragments of plans from
previous evacuations. Within HICAP, NaCoDAE and SHOP are integrated quite tightly: each is
capable of using the other to decompose tasks into subtasks. For more information about HICAP,
see (http://www.aic.nrl.navy.mil:80/hicap).

Evaluating Terrorist Threats (Naval Research Laboratory, Washington, DC)

The purpose of NRL’s AHEAD project is to help intelligence analysts understand and evaluate
hypotheses about terrorist threats. Given a hypothesis, the AHEAD system uses analogical retrieval
to obtain a model of the hostile activity most closely related to the hypothesis. This model is
encoded as an HTN domain description for SHOP2 in which individual actions are annotated

order;” SHOP2 received one of the former. For more information about the competition, see (http://planning.cis.
strath.ac.uk/competition).

2As of June 24, the log of downloads from our web site shows 1783 downloads, but this does not include the
number of times that users have downloaded directly from our ftp server rather than going through our web site. We
imagine the total number of downloads is above 2000.

with additional explanatory information about their function. AHEAD invokes SHOP2 using this
domain description to produce a plan that is compatible with the hypothesis. As each operator is
added to the plan, SHOP2 queries an external evidence database to determine whether the evidence
is consistent with that operator. When the evidence is consistent with the operator, AHEAD
generates an argument in favor of the hypothesis; when the evidence is inconsistent, AHEAD
generates a counterargument. The resulting structured argument is presented in a browsable user
interface. HTN planning is particularly well-suited to this process because HTNs organize behavior
into meaningful components at multiple levels of abstraction thus enabling coherent, structured
argumentation. For more information about AHEAD, see (http://www.nrl.navy.mil/aic/iss/
ida/projects/ahead/AHEAD.php).

Fighting Forest Fires (LAAS/CNRS, Toulouse, France)

The European Union’s COMETS project focuses on the development of unmanned aerial vehicle
(UAV) control techniques for detection and monitoring of forest fires. As part of this project,
researchers at LAAS, a government research laboratory in Toulouse, France, are developing a
distributed architecture in which each UAV will contain a generic “decisional node” consisting of a
supervisor and a planner.

Within each decisional node, they are using SHOP2 as the symbolic planner: they exploit
SHOPZ2’s forward-chaining capability to integrate its planning activity with specialized software for
estimating the costs, time, etc., for basic UAV operations. In order to perform temporal reasoning,
they are using the same time-stamping technique we developed for temporal planning with SHOP2
in the 2002 International Planning Competition [7]. The researchers anticipate that they soon will
have simulation results and will be able to run experiments using LAAS’s blimp, Karma. More
information about the project is available at (http://www.comets-uavs.org).

Software Systems Integration (NIST, Gaithersburg, MD)

NIST (National Institute of Standards and Technology) is using SHOP2 in a project whose goal
is to automate tasks of software systems integration. So far, the particular example they have used
is based on General Motors’ ebXML-based “bulk rental car buying” interfaces. These interfaces
allow a buyer to search for cars of a particular make, model and year, and purchase them. But if a
buyer wants to get a summary of various cars at various locations (e.g., in order to minimize costs),
the interface makes it difficult to do this. NIST’s code reads the seller’'s ebXML BPSS (business
process specification schema) and produces a SHOP2 planning problem in which SHOP determines
the sequence of transactions against the seller’s interfaces to achieve the buyer’s objective. For
further information about the project, see (http://www.mel.nist.gov/proj/mee.htm).

4.2 Industry Projects

Controlling Multiple UAVs (SIFT, Minneapolis, M)

SIFT, LLC is using a modified version of the SHOP2 planner in a UAV control system in
their PVACS project, with funding from DARPA through an SBIR contract. SIFT’s ”Playbook”
control system allows time-pressured users, who are not UAV operators, to request reconnaissance
missions using high-level tasking commands, modeled on the way people delegate tasks to human
subordinates. The SIFT Playbook supports interactions through both PDA and desktop/laptop
interfaces. The Playbook translates users’ brief, general commands into very specific control actions
suitable for execution. The Playbook’s Executive provides high-level closed-loop monitoring and

implementation of the Playbook’s plans, controlling multiple UAVs through the Variable Autonomy
Control System (VACS) Ground Control Station (GCS), developed by Geneva Aerospace, Inc. The
Playbook currently operates these UAVs in a high-fidelity simulation environment, but the interface
it uses to control the simulated UAVs through the VACS GCS is the same as the one used to direct
VACS UAVs in real flight operations.

The modified SHOP2 planner plays a key role in SIFT’s Playbook, translating the user’s high
level task specifications into a sequence of commands that can be executed by UAVs. SIFT’s
plan library contains tasks for multiple reconnaissance missions, for both rotorcraft and fixed-wing
UAVs. Robert Goldman at SIFT has developed an augmented version of SHOP2 that generates
temporal plans including durative actions, and provides more knowledge-engineering and debugging
support. For further information, see (http://www.sift.info/English/projects/PVACS.ppt).

Evaluation of Enemy Threats (Lockheed Martin ATL, Cherry Hill, NJ)

Lockheed Martin Advanced Technology Laboratories, in collaboration with the Army Research
Laboratory, is using SHOP in a project that attempts to evaluate possible enemy threats. They
are using SHOP to decompose higher level tasks such as ’attack blue-convoy’ into sequences of
operations such as ’move red-tankl to location2, ..., fire red-tankl at blue-convoy.” Due to their
confidentiality restrictions, they were unable to tell us any further details.

Location-Based Services (Sony Electronics, San Jose, CA)

Sony Electronics Incorporated has used SHOP in a project aimed at developing mobile GIS
devices to help people plan errands that take them to different geographical locations. Due to
Sony’s confidentiality requirements, they were unable to tell us any further details.

Material Selection for Manufacturing (Infocraft Ltd., Sri Lanka)

Infocraft Ltd. (http://www.infocraft.1lk) is developing a system that uses SHOP2 for mate-
rial selection in continuous-process manufacturing: specifically, the production of activated carbon
from charcoal using a discrete set of continuous manufacturing processes. The desired properties
of the carbon (specifically its grade size and adsorption level) will vary from one run to another,
as will the characteristics of different supplies of charcoal. The objective of the project is to use
SHOP2 to select which supplies of charcoal will most reliably produce activated carbon with a
desired set of properties. SHOP2’s abilities to do numerical and axiomatic reasoning are essential
for this project: adsorption levels are represented as real numbers, and grade sizes are represented
as normal distributions.

4.3 University Projects

Automated Composition of Web Services (University of Maryland)

Web services are Web accessible, loosely coupled chunks of functionality with an interface de-
scribed in a machine readable format. Web services are designed to be composed, that is, combined
in workflows of varying complexity to provide functionality that none of the component services
could provide alone.

In the OWL-S (formerly DAML-S) language for semantic markup of web services, services can
be described as complex or atomic processes with preconditions and effects. This makes it possible
to translate the OWL-S process-model constructs directly to SHOP2 methods and operators, and

we have developed an algorithm to do so. This means that SHOP2 can be used to solve service
composition problems, by telling SHOP2 to find a plan for the task that is the translation of a
composite process [16, 11].

Project Planning (Lehigh University)

The SHOP/CCBR system is a tool developed at the Lehigh University for investigating the
use of HTN planning techniques to support project management. The SHOP/CCBR system is
a straightforward extension of SHOP that uses cases to decompose tasks. Cases are similar in
structure to methods, the main difference being that cases include preference information for use in
ranking applicable cases. SHOP/CCBR uses a communication module to interact with Microsoft
Project, a commercial tool for project management. This allows displaying the HTN decompositions
generated with SHOP’s hierarchical planning algorithm in Microsoft Project. The on-going work
involves developing algorithms to capture cases automatically from user interactions with Microsoft
Project.

Statistical Goal Recognition in Agent Systems (University of Rochester)

For an agent to perform effectively in a multi-agent environment, an important task is goal
recognition, i.e., inferring the goals of other agents. Researchers at the University of Rochester
are developing a statistical approach to goal recognition using machine-learning techniques. To do
the learning requires a labeled “plan corpus” of plans and their associated goals. They are using
SHOP2 to generate such plan corpora stochastically. For this purpose, they are using a modified
version of SHOP2 that makes random choices at every point where more than one possible decision
is available to SHOP2. For more information about the project, see (http://www.cs.rochester.
edu/research/cisd/projects/goalrec).

Additional University Projects

Worldwide, SHOP and SHOP2 have been used in many more college and university projects
than we can mention, but here are some notes about a few of them.

e Drexel University regularly uses SHOP and SHOP2 in their Introductory Al class in order to
teach planning, and in their Knowledge-Based Agents course to do agent reasoning, service
composition, etc.

e At the National University of Colombia in Medellin, Colombia, a system is being developed that
uses SHOP2 to automatically create virtual courses from existing educational material.

e At the Technical University of Cluj-Napoca in Romania, SHOP has been used for an e-commerce
aplication, to build plans for bidding in a modified version of the Trading Agent Competition.

e At Trinity College Dublin, SHOP2 is being used in a web-service composition project somewhat
similar to ours.

e Researchers in the Aerospace Engineering Department at the University of Maryland have just
begun a project in which they are using SHOP2 as the planning component in an architecture
that combines task planning, real-time scheduling, and motion/trajectory planning.

e At Villanova University, SHOP2 has been used in a mock spacecraft-mission scenario, to study

how the density, distribution and overall layout of environment obstacles can be used to compute
and predict the best optimization technique to use within SHOP2.

5 Concluding Remarks

We have been pleasantly surprised at the extent to which people have begun using SHOP and
SHOP2 in their research and development projects. We believe that this has come about for
several reasons:

e SHOP and SHOP2 are based on HT'N decomposition. The decomposition of tasks into subtasks
seems to correspond well to the way in which users think about how to generate plans.

e Unlike most other automated-planning systems, SHOP and SHOP2 plan for tasks in the same
order that the tasks will be executed. This removes a great deal of uncertainty at planning time,
which makes it easier to write write complex domain descriptions.

e SHOP and SHOP2 are available as open-source software. This has made it easy for users to find
and fix bugs, and to adapt the software for their own purposes.

The success of SHOP and SHOP2 has given us many ideas for improvements and extensions.
We now describe some of our ongoing and future work on those topics.

5.1 Automated Learning of Planning Domains

A great challenge in using any planning system to solve real-world problems is the difficulty of
acquiring the domain knowledge that the system will need. We are working on ways to address
part of this problem by having the planning system learn the HTN methods incrementally under
supervision of an expert.

We have developed a general formal framework for learning HTN methods, and a supervised
learning algorithm, named CaMeL, based on this formalism [4]. We have developed theoretical
results about CaMeL’s soundness, completeness, and convergence properties, and have done ex-
perimental studies of its speed of convergence under different conditions. The experimental results
suggest that CaMel. may potentially to be useful in real-world applications.

5.2 Compiling Planning Domains

A domain-configurable planner may be viewed as an interpreter of its domain-description language:
given a domain description D and a planning problem P, the planner invokes the methods and
operators of D interpretively on P. An alternative approach is to write a compiler for the domain
description language: the input to the compiler is a domain description D, and the output is a
domain-specific planning program for D, that can be run directly on any planning problem P in
D.

The advantages of such a planner compilation approach are analogous to the advantages that
compilationhas over interpretation in conventional programming languages. By compiling domain
descriptions directly into low-level executable code, we can do implementation-level optimizations
that are not otherwise possible and have not been explored in previous research on Al planning.
These optimizations can be coupled with other speed-up techniques (e.g., domain analysis and
other automated domain information synthesis techniques) in order to obtain additional speedups.

We are developing JSHOP2, a Java implementation of SHOP2 that uses this domain-compilation
technique. Our preliminary experimental results suggests that the compilation technique substan-
tially increases the planner’s efficiency. A technical report on this topic is available [9], and we
intend to make JSHOP?2 itself available in a few months.

10

5.3 Planning Under Uncertainty

In planning research, the “classical” model of actions is that they have deterministic outcomes.
However, in many situations where one might want to do planning, it may be useful to assume that
some actions have more than one possible outcome. This action model can be useful in situations
where the outcome of an action might vary due to random changes in the environment or to the
actions of other agents.

We are developing a general technique for taking forward-chaining planners for deterministic
domains and adapting them to work in nondeterministic planning domains, i.e., planning domains
in which each action may have more than one possible outcome. We have shown both theoretically
and experimentally that our approach can produce exponential speedups over previous algorithms
for planning in nondeterministic environments [5].

We are currently extending our approach to work for situations in which actions have proba-
bilistic outcomes (e.g., MDP models of actions). We believe that we will be able to obtain similar
speedups in these kinds of planning domains.

5.4 Planning with Distributed Information Sources

Planning researchers typically assume that the planning system is isolated: it begins with a complete
description of the planning problem, and has no need of interacting with the external world during
the planning process. In many practical situations, such an assumption is clearly unrealistic: the
planner may need to obtain information from external sources during planning.

We have developed a formalism for wrappers that may be placed around conventional (isolated)
planners to replace some of the planner’s memory accesses with queries to external information
sources. When appropriate, the wrapper can automatically backtrack the planner to a previous
point in its operation. We have done both mathematical and experimental analysis of several
different query-management strategies for these wrappers, i.e., strategies for when to issue queries,
and when/how to backtrack the planner. Our results [1] show conditions under which different
query management strategies are preferable, and suggest that domain-configurable planners such
as SHOP2 are likely to be better suited than other planners for planning with volatile information.

Even better performance can be obtained if a planner can make non-blocking queries to external
information sources, i.e., if the planner can continue exploring other parts of its search space while
waiting for the response to a query. We have developed a modified version of SHOP2 that works
in this way. We have shown experimentally that this dramatically improves (i) the time needed
to find a solution and (ii) in cases where the information source is not guaranteed to respond, the
chance of finding a solution at all [6].

Acknowledgments

This work was supported in part by the following grants, contracts, and awards: Air Force Research
Laboratory F30602-00-2-0505, Army Research Laboratory DAAL0197K0135, and Naval Research
Laboratory N00173021G005. The opinions expressed in this paper are those of authors and do not
necessarily reflect the opinions of the funders.

We also wish to acknowledge the following people who have shared information with us about the
use of SHOP and SHOP2 in their projects: David Aha at NRL, Jeremi Gancet at LAAS/CNRS,
Peter Denno at NIST, Robert Goldman at SIFT LLC, Sergio Gigli and Benjamin Grooters at

11

Lockheed Martin ATL, Mark Plutowski at Sony Electronics Incorporated, Nuwan Waidyanatha at
Infocraft Ltd., Nate Blaylock at the University of Rochester, William Regli at Drexel University,
Jaime Guzman at the National University of Colombia, Adrian Groza at the Technical University
of Cluj-Napoca, Romania, Ella Atkins at the University of Maryland, and Filip Jagodzinski at
Villanova University.

References

[1]

Tsz-Chiu Au, Dana Nau, and V.S. Subrahmanian. Utilizing volatile external information
during planning. In Proceedings of the European Conference on Artificial Intelligence (ECAI),
August 2004. To appear.

Kutluhan Erol, James Hendler, and Dana S. Nau. Complexity results for hierarchical task-
network planning. Annals of Mathematics and Artificial Intelligence, 18:69-93, 1996.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory and Practice.
Morgan Kaufmann, May 2004.

Okhtay Ilghami, Dana S. Nau, Héctor Munoz-Avila, and David W. Aha. CaMeL: Learning
methods for HTN planning. In AIPS-2002, Toulouse, France, 2002.

U. Kuter and D. Nau. Forward-chaining planning in nondeterministic domains. In Proceedings
of the National Conference on Artificial Intelligence (AAAI), 2004. To appear.

U. Kuter, E. Sirin, D. Nau, B. Parsia, and J. Hendler. Information gathering during planning
for web services composition. In ICAPS-04 Workshop on Planning and Scheduling for Web
and Grid Services, 2004.

Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dan Wu, and
Fusun Yaman. SHOP2: An HTN planning system. Journal of Artificial Intelligence Research,
20:379-404, December 2003.

Dana S. Nau, Yue Cao, Amnon Lotem, and Héctor Munoz-Avila. SHOP: Simple hierarchical
ordered planner. In Thomas Dean, editor, Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), pages 968-973. Morgan Kaufmann Publishers, July 31—
August 6 1999.

Okhtay Ilghami Okhtay and Dana S. Nau. A general approach to synthesize problem-specific
planners. Technical Report CS-TR-4597, UMIACS-TR-2004-40, University of Maryland, Oc-
tober 2003.

E. Sacerdoti. The nonlinear nature of plans. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 206-214, 1975.

Evren Sirin, Bijan Parsia, Dan Wu, James Hendler, and Dana Nau. HTN planning for web
service composition using SHOP2. Web Semantics Journal, 2004. To appear.

Stephen J. J. Smith, Dana S. Nau, and Thomas Throop. Computer bridge: A big win for Al
planning. Al Magazine, 19(2):93-105, 1998.

A. Tate. Generating project networks. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), pages 888-893, 1977.

12

[14] A. Tate, B. Drabble, and R. Kirby. O-Plan2: An Architecture for Command, Planning and
Control. Morgan-Kaufmann, 1994.

[15] David E. Wilkins. Practical Planning: Extending the Classical AI Planning Paradigm. Morgan
Kaufmann, San Mateo, CA, 1988.

[16] Dan Wu, Bijan Parsia, Evren Sirin, James Hendler, and Dana Nau. Automating DAML-S web
services composition using SHOP2. In Proceedings of the Second International Semantic Web
Conference (ISWC2003), 2003.

13

